

PEOPLE TRACKING FOR HETEROGENEOUS NETWORKS OF COLOR-DEPTH CAMERAS

Matteo Munaro^{1,3}, Alex Horn², Randy Illum², Jeff Burke², and Radu Bogdan Rusu³

¹ IAS-Lab at Department of Information Engineering, University of Padova ² Center for Research in Engineering, Media and Performance, University of California Los Angeles ³ Open Perception, Inc., Menlo Park, CA

1st International Workshop on 3D Robot Perception with Point Cloud Library Padova, July 15, 2014

IAS-LAB

- > open source solution for scalable, multi-imager person tracking for education, arts, and culture applications
- ➤ OpenPTrack is led by <u>UCLA REMAP</u> and <u>Open Perception</u>. Key collaborators include the <u>University of Padova</u> and <u>Electroland</u>. Code is available under a BSD license. Portions of the work are supported by the National Science Foundation (IIS-1323767)

ELECTROLAND

http://openptrack.org

IAS-LAB

Background subtraction in depth image [1]

IAS-LAB

Dense scanning of RGB and depth images ([2],[3])

- [2] L. Spinello and K. O. Arras. *People detection in rgb-d data*. In IROS 2011.
- [3] M. Luber, L. Spinello, and K. O. Arras, *People tracking in rgb-d data with on-line boosted target models*, in IROS 2011.

IAS-LAB

Based on point cloud sub-clustering

• <u>Hypothesis</u>: single ground plane

- [4] M. Munaro, F. Basso, S. Michieletto and E. Menegatti. *Fast and robust multi-people tracking from RGB-D data for a mobile robot*. In Proceedings of the 12th Intelligent Autonomous Systems (IAS) Conference, Jeju Island (Korea), 2012.
- [5] M. Munaro, F. Basso and E. Menegatti. *Tracking people within groups with RGB-D data*. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS) 2012, Vilamoura (Portugal), 2012.
- [6] M. Munaro, E. Menegatti. Fast RGB-D People Tracking for Service Robots. Autonomous Robots Journal, 2014.

IAS-LAB

- Height-based point cloud labeling
- subclustering in depth image

[7] Omid Hosseini Jafari, Dennis Mitzel, Bastian Leibe. *Real-Time RGB-D based People Detection and Tracking for Mobile Robots and Head-Worn Cameras*. ICRA 2014.

Multi-camera tracking

- Multiple cameras
 - Create redundancy
 - Reduce the problem of occlusion
- Problem poorly studied in literature [8]
- Main problems in network of RGB-D sensors:
 - Network calibration
 - Scalability

Distributed Multi-camera tracking

People Detection on Kinect data

IAS-LAB

Ground plane estimation and removal

Euclidean clustering of remaining points

Detection on Point Cloud: main issues

IAS-LAB

People vertically splitted into more clusters

➤ More people **merged** into the same cluster

RGB

Depth point cloud

Depth point cloud (top view)

Sub-clustering procedure

IAS-LAB

Subdivision of big clusters by means of **head detection** (peaks in height from the ground plane)

- Candidate clusters are extended until the ground plane for achieving robustness to lower limbs occlusion
- HOG detector [10] applied to image patches that are projection of 3D clusters onto the RGB image

[10] N. Dalal and B. Triggs. Histogram of Oriented Gradients for Human Detection, CVPR 2005.

Classification scheme adaptation to brightness changes

Automatic ground plane estimation

Automatic ground plane estimation

People detection for very tilted sensors

IAS-LAB

Only for clustering operations (e.g. computing a cluster's bounding box):

the point cloud is rotated so that the ground plane is aligned with camera xOz plane

People Detection on SwissRanger (ToF) data

(a) Depth

(b) Intensity

(c) Confidence

- Point cloud filtering based on confidence image
- Depth-based clustering (as for Kinect)
- Infrared intensity image equalization
- HOG+SVM classification on equalized intensity image

People Detection on SwissRanger (ToF) data

Fig. 7. People detection results on SwissRanger infrared intensity images.

Centralized tracking-by-detection node

IAS-LAB

- An Unscented Kalman Filter (UKF) is used to predict people positions along the two world axes (x, y)
- Human motion is modeled with a constant velocity model
- The tracking node receives detections from all distributed detection nodes
- A cost matrix is created based on the Mahanolobis distance between the new detections and the predicted position of all active tracks

$$D_M^{i,j} = \tilde{\mathbf{z}}_k^{\mathrm{T}}(i,j) \cdot \mathbf{S}_k^{-1}(i) \cdot \tilde{\mathbf{z}}_k(i,j)$$

$$\tilde{\mathbf{z}}_k(i,j) = \mathbf{z}_k(i,j) - \hat{\mathbf{z}}_{k|k-1}(i).$$

The track-detection association is done with the Global Nearest Neighbor method

IAS-LAB

- > A checkerboard is moved in front of the cameras
- If two cameras see the checkerboard at the same time, the transformation between them can be estimated
- > A transformation tree is built starting from the first camera that sees the checkerboard
- All images are then used in an optimization problem [9] which optimizes:
 - The pose of every camera
 - The pose of every checkerboard

Results:

- Extrinsic parameters are estimated in real time
- The ground plane equation can be calibrated too.

IAS-LAB

External view of camera network with two Kinects

IAS-LAB

Multi-imager calibration: 2 Kinects

(a) Pairwise calibration

(b) Ground plane calibration

IAS-LAB

Multi-imager calibration: 1 Kinect and 1 Mesa SwissRanger SR4500

Calibration of Kinects and SwissRangers

Fig. 3. Extrinsic calibration results for a network composed of three Kinects (images on the left) and three SwissRangers SR4500 (images on the right).

Results: Tracking from two Kinect cameras

Università degli Studi di Padova

Results: Tracking from three Kinect cameras

Università degli Studi di Padova

Results: Tracking from three Kinect cameras

OpenPTrack installations

- Chiparaki, Los Angeles (CA), March 2014
 - Six cameras (three Kinects, three SwissRangers)
 - > 8x6x4m Pavilion
 - Tracking output drove an interactive mural

- UCLA Lab School, Los Angeles (CA)
 - > Applied to children
 - Tracking output drove a science simulation (on-screen avatars)

IAS-LAB

- Open source multi-camera people tracking
- Distributed infrastructure for people detection
- Real-time and user-friendly calibration procedure
- Works with both Microsoft Kinect and Mesa SwissRanger SR4500
- People detection adaptation to brightness conditions

Future works:

- Improve extrinsic calibration
 - RGB+depth
 - Depth map correction
 - Handle network delays
- Stereo camera support
- Increase ID persistence (height feature, re-identification signatures?)
- Increase detection accuracy for cameras placed very high and for detecting children
- Real-time parameter configuration (GUI)

Any questions?

matteo.munaro@dei.unipd.it http://www.dei.unipd.it/~munaro http://openptrack.org

